Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Hyg Environ Health ; 242: 113948, 2022 05.
Article in English | MEDLINE | ID: covidwho-1783418

ABSTRACT

There is increasing evidence of the use of wastewater-based epidemiology to integrate conventional monitoring assessing disease symptoms and signs of viruses in a specific territory. We present the results of SARS-CoV-2 environmental surveillance activity in wastewater samples collected between September 2020 and July 2021 in 9 wastewater treatment plants (WTPs) located in central and western Sicily, serving over 570,000 residents. The presence of SARS-CoV-2, determined in 206 wastewater samples using RT-qPCR assays, was correlated with the notified and geo-referenced cases on the areas served by the WTPs in the same study period. Overall, 51% of wastewater samples were positive. Samples were correlated with 33,807 SARS-CoV-2 cases, reported in 4 epidemic waves, with a cumulative prevalence of 5.9% among Sicilian residents. The results suggest that the daily prevalence of SARS-CoV-2 active cases was statistically significant and higher in areas with SARS-CoV-2 positive wastewater samples. According to these findings, the proposed method achieves a good sensitivity profile (78.3%) in areas with moderate or high viral circulation (≥133 cases/100,000 residents) and may represent a useful tool in the management of epidemics based on an environmental approach, although it is necessary to improve the accuracy of the process.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pilot Projects , Sicily/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring
2.
Int J Environ Res Public Health ; 18(19)2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1444203

ABSTRACT

As a complement to clinical disease surveillance, the monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater can be used as an early warning system for impending epidemics. This study investigated the dynamics of SARS-CoV-2 in untreated wastewater with respect to the trend of coronavirus disease 2019 (COVID-19) prevalence in Southern Italy. A total of 210 wastewater samples were collected between May and November 2020 from 15 Apulian wastewater treatment plants (WWTP). The samples were concentrated in accordance with the standard of World Health Organization (WHO, Geneva, Switzerland) procedure for Poliovirus sewage surveillance, and molecular analysis was undertaken with real-time reverse-transcription quantitative PCR (RT-(q) PCR). Viral ribonucleic acid (RNA) was found in 12.4% (26/210) of the samples. The virus concentration in the positive samples ranged from 8.8 × 102 to 6.5 × 104 genome copies/L. The receiver operating characteristic (ROC) curve modeling showed that at least 11 cases/100,000 inhabitants would occur after a wastewater sample was found to be positive for SARS-CoV-2 (sensitivity = 80%, specificity = 80.9%). To our knowledge, this is the first study in Italy that has applied wastewater-based epidemiology to predict COVID-19 prevalence. Further studies regarding methods that include all variables (meteorological phenomena, characteristics of the WWTP, etc.) affecting this type of wastewater surveillance data would be useful to improve data interpretation.


Subject(s)
COVID-19 , Humans , Italy/epidemiology , SARS-CoV-2 , Sewage , Wastewater
3.
Water ; 13(18):2503, 2021.
Article in English | MDPI | ID: covidwho-1411093

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) poses an increased risk to global public health and underlines the need to prioritise monitoring and research to better respond to the COVID-19 pandemic. Wastewater monitoring can be used to monitor SARS-CoV-2 spread and to track SARS-CoV-2 variants. A long read amplicon sequencing approach based on the Oxford Nanopore technology, targeting the spike protein, was applied to detect SARS-CoV-2 variants in sewage samples collected in central Italy on April 2021. Next-generation sequencing was performed on three pooled samples. For variant identification, two approaches–clustering (unsupervised) and classification (supervised)–were implemented, resulting in the detection of two VOCs and one VOI. Key mutations of the Alpha variant (B.1.1.7) were detected in all of the pools, accounting for the vast majority of NGS reads. In two different pools, mutations of the Gamma (P.1) and Eta (B.1.525) variants were also detected, accounting for 22.4%, and 1.3% of total NGS reads of the sample, respectively. Results were in agreement with data on variant circulation in Italy at the time of wastewater sample collection. For each variant, in addition to the signature key spike mutations, other less common mutations were detected, including the amino acid substitutions S98F and E484K in the Alpha cluster (alone and combined), and S151I in the Eta cluster. Results of the present study show that the long-read sequencing nanopore technology can be successfully used to explore SARS-CoV-2 diversity in sewage samples, where multiple variants can be present, and that the approach is sensitive enough to detect variants present at low abundance in wastewater samples. In conclusion, wastewater monitoring can help one discover the spread of variants in a community and early detect the emerging of clinically relevant mutations or variants.

4.
Environ Res ; 191: 110231, 2020 12.
Article in English | MEDLINE | ID: covidwho-785565

ABSTRACT

The COVID-19 pandemic started in China in early December 2019, and quickly spread around the world. The epidemic gradually started in Italy at the end of February 2020, and by May 31, 2020, 232,664 cases and 33,340 deaths were confirmed. As a result of this pandemic, the Italian Ministerial Decree issued on March 11, 2020, enforced lockdown; therefore, many social, recreational, and cultural centers remained closed for months. In Apulia (southern Italy), all non-urgent hospital activities were suspended, and some wards were closed, with a consequent reduction in the use of the water network and the formation of stagnant water. This situation could enhance the risk of exposure of people to waterborne diseases, including legionellosis. The purpose of this study was to monitor the microbiological quality of the water network (coliforms, E. coli, Enterococci, P. aeruginosa, and Legionella) in three wards (A, B and C) of a large COVID-19 regional hospital, closed for three months due to the COVID-19 emergency. Our study revealed that all three wards' water network showed higher contamination by Legionella pneumophila sg 1 and sg 6 at T1 (after lockdown) compared to the period before the lockdown (T0). In particular, ward A at T1 showed a median value = 5600 CFU/L (range 0-91,000 CFU/L) vs T0, median value = 75 CFU/L (range 0-5000 CFU/L) (p-value = 0.014); ward B at T1 showed a median value = 200 CFU/L (range 0-4200 CFU/L) vs T0, median value = 0 CFU/L (range 0-300 CFU/L) (p-value = 0.016) and ward C at T1 showed a median value = 175 CFU/L (range 0-22,000 CFU/L) vs T0, median value = 0 CFU/L (range 0-340 CFU/L) (p-value < 0.001). In addition, a statistically significant difference was detected in ward B between the number of positive water samples at T0 vs T1 for L. pneumophila sg 1 and sg 6 (24% vs 80% p-value < 0.001) and for coliforms (0% vs 64% p-value < 0.001). Moreover, a median value of coliform load resulted 3 CFU/100 ml (range 0-14 CFU/100 ml) at T1, showing a statistically significant increase versus T0 (0 CFU/100 ml) (p-value < 0.001). Our results highlight the need to implement a water safety plan that includes staff training and a more rigorous environmental microbiological surveillance in all hospitals before occupying a closed ward for a longer than one week, according to national and international guidelines.


Subject(s)
Coronavirus Infections , Legionella pneumophila , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , China/epidemiology , Escherichia coli , Humans , Italy/epidemiology , SARS-CoV-2 , Water , Water Microbiology , Water Supply
5.
Sci Total Environ ; 750: 141711, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-713671

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease COVID-19, a public health emergency worldwide, and Italy is among the most severely affected countries. The first autochthonous Italian case of COVID-19 was documented on February 21, 2020. We investigated the possibility that SARS-CoV-2 emerged in Italy earlier than that date, by analysing 40 composite influent wastewater samples collected - in the framework of other wastewater-based epidemiology projects - between October 2019 and February 2020 from five wastewater treatment plants (WWTPs) in three cities and regions in northern Italy (Milan/Lombardy, Turin/Piedmont and Bologna/Emilia Romagna). Twenty-four additional samples collected in the same WWTPs between September 2018 and June 2019 (i.e. long before the onset of the epidemic) were included as 'blank' samples. Viral concentration was performed according to the standard World Health Organization procedure for poliovirus sewage surveillance, with modifications. Molecular analysis was undertaken with both nested RT-PCR and real-rime RT-PCR assays. A total of 15 positive samples were confirmed by both methods. The earliest dates back to 18 December 2019 in Milan and Turin and 29 January 2020 in Bologna. Virus concentration in the samples ranged from below the limit of detection (LOD) to 5.6 × 104 genome copies (g.c.)/L, and most of the samples (23 out of 26) were below the limit of quantification of PCR. Our results demonstrate that SARS-CoV-2 was already circulating in northern Italy at the end of 2019. Moreover, it was circulating in different geographic regions simultaneously, which changes our previous understanding of the geographical circulation of the virus in Italy. Our study highlights the importance of environmental surveillance as an early warning system, to monitor the levels of virus circulating in the population and identify outbreaks even before cases are notified to the healthcare system.


Subject(s)
Coronavirus Infections , Environmental Monitoring , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , Italy/epidemiology , SARS-CoV-2
6.
Sci Total Environ ; 736: 139652, 2020 Sep 20.
Article in English | MEDLINE | ID: covidwho-343544

ABSTRACT

Several studies have demonstrated the advantages of environmental surveillance through the monitoring of sewage for the assessment of viruses circulating in a given community (wastewater-based epidemiology, WBE). During the COVID-19 public health emergency, many reports have described the presence of SARS-CoV-2 RNA in stools from COVID-19 patients, and a few studies reported the occurrence of SARS-CoV-2 in wastewaters worldwide. Italy is among the world's worst-affected countries in the COVID-19 pandemic, but so far there are no studies assessing the presence of SARS-CoV-2 in Italian wastewaters. To this aim, twelve influent sewage samples, collected between February and April 2020 from Wastewater Treatment Plants in Milan and Rome, were tested adapting, for concentration, the standard WHO procedure for Poliovirus surveillance. Molecular analysis was undertaken with three nested protocols, including a newly designed SARS-CoV-2 specific primer set. SARS-CoV-2 RNA detection was accomplished in volumes of 250 ml of wastewaters collected in areas of high (Milan) and low (Rome) epidemic circulation, according to clinical data. Overall, 6 out of 12 samples were positive. One of the positive results was obtained in a Milan wastewater sample collected a few days after the first notified Italian case of autochthonous SARS-CoV-2. The study confirms that WBE has the potential to be applied to SARS-CoV-2 as a sensitive tool to study spatial and temporal trends of virus circulation in the population.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Pandemics , Pneumonia, Viral , Wastewater/virology , COVID-19 , Humans , Italy , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sewage/virology
7.
Water Res ; 179: 115899, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-165774

ABSTRACT

Coronaviruses (CoV) are a large family of viruses causing a spectrum of disease ranging from the common cold to more severe diseases as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). The recent outbreak of coronavirus disease 2019 (COVID-19) has become a public health emergency worldwide. SARS-CoV-2, the virus responsible for COVID-19, is spread by human-to-human transmission via droplets or direct contact. However, since SARS-CoV-2 (as well as other coronaviruses) has been found in the fecal samples and anal swabs of some patients, the possibility of fecal-oral (including waterborne) transmission need to be investigated and clarified. This scoping review was conducted to summarize research data on CoV in water environments. A literature survey was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded more than 3000 records, but only 12 met the criteria and were included and discussed in this review. In detail, the review captured relevant studies investigating three main areas: 1) CoV persistence/survival in waters; 2) CoV occurrence in water environments; 3) methods for recovery of CoV from waters. The data available suggest that: i) CoV seems to have a low stability in the environment and is very sensitive to oxidants, like chlorine; ii) CoV appears to be inactivated significantly faster in water than non-enveloped human enteric viruses with known waterborne transmission; iii) temperature is an important factor influencing viral survival (the titer of infectious virus declines more rapidly at 23°C-25 °C than at 4 °C); iv) there is no current evidence that human coronaviruses are present in surface or ground waters or are transmitted through contaminated drinking-water; v) further research is needed to adapt to enveloped viruses the methods commonly used for sampling and concentration of enteric, non enveloped viruses from water environments. The evidence-based knowledge reported in this paper is useful to support risk analysis processes within the drinking and wastewater chain (i.e., water and sanitation safety planning) to protect human health from exposure to coronavirus through water.


Subject(s)
Coronavirus Infections , Pneumonia, Viral , Water Supply , Betacoronavirus , COVID-19 , Feces , Humans , Pandemics , SARS-CoV-2 , Water
SELECTION OF CITATIONS
SEARCH DETAIL